B.Sc Physics Semester VI Elective – IV (a): Nanomaterials and its Applications Subject Code: PC1764

No of hours per week	No of credits	Total no of hours	Marks
5	4	75	100

Objectives : 1. To gain knowledge on synthesis and characterization of nanomaterials.

2. To understand the advancements and applications of nanostructures.

СО	Course outcomes	PSOs	CL
No	Upon completion of this course, students will be able to	addressed	
CO-1	Infer the history of nanotechnology and explain the various dimensions of nanostructures	PSO-1	U
CO-2	Apply the characterization techniques of nanomaterials (XRD,SEM,TEM and Analytical Electron Microscope)	PSO-3	Ар
CO-3	Explain the synthesis of nanomaterials and categorize their properties	PSO-2	An
CO-4	Interpret quantum well, quantum wires and quantum dots	PSO-5	Е
CO-5	Explain the carbon nanotubes and its applications.	PSO-6	Е
CO-6	Discuss the applications of nanotechnology in various fields	PSO-4	С

ModulesCredits: 4Total contact hours: 75 (Including assignments and tests)

Unit	Section	Topics	Lect ure hour s	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Introd	uction to nanotechnology				
	1	History of nanotechnology – Inorganic nanomaterials - Organic nanomaterials - Techniques in nanotechnology	3	To understand the history of nanotechnology and its techniques	Lecture Discussio n with PPT illustration	Evaluation through short test Multiple choice

	2 3	Dimensionsofnanostructures–Onedimensionalnanoscale–Twodimensionalnanoscalenanoscale–Threedimensional nanoscaleThreeManocrystals. Synthesis ofnanomaterials:sol-gelmethod,ballmilling,		To be able to distinguish the dimensions of nanoscale To know the principles of nanomaterials	discussion with illustration	questions Formative assessment I
	4	colloidal growth Characterization of nanomaterials – X-ray diffraction (XRD) – Scanning Electron Microscope (SEM) – Transmission Electron Microscope (TEM) – Analytical Electron Microscope – Significance of nanoparticles	3	and their synrhesis. To distinguish between nanorings, nanorods, nanoshells and to acquire knowledge on the properties of nanoparticles	Lecture discussion	
II	Quantu 1	m wells, Quantum wires and Introduction – Potential well – Quantum well – Particle in a box – One- dimensional box – Two- dimensional box – Three- dimensional box	Quantu 5	-	Lecture with PPT Illustration	Formative assessment I
	2	Superlattices– Types of Superlattices	3	To understand the concept of Superlattices and its types	session Lecture	
	3	Applications of quantum wells –Quantum wire – Density of States (3D, 2D, 1D, 0D) –Quantum dots – Electrons in mesoscopic structures.	4	To know the density of States, Quantum dots and electron in mesoscopic structure	Lecture with PPT Illustration	
III	Carbon	Nanotubes				·
	1	Discovery of nanotubes –	3 7	Го acquire	Lecture	

		Allotropes of carbon – Structure of carbon nanotubes		knowledgeondiscovery,Allotropesofcarbonandstructureofcarbon nanotubes	Discussion videos ppt	Formative assessment II
	2	Categories of carbon nanotubes : Tours – Buckminster fullerene – Carbon nanohorns – Fullerite – Nanobud	3	To categorize carbon nanotubes	Lecture Discussion videos	
	3	Synthesis of carbon nanotubes: Laser method – Electrolysis – Chemical Vapour Deposition (CVD)	3	Tohaveaknowledgeonsynthesisofcarbon nanotubes	Lecture with PPT Illustration	
	4	Purification of carbon nanotubes and fullerene – Applications of carbon nanotubes.	3	Toacquireknowledgeonpurificationandapplicationsofcarbon nanotubes	Lecture Discussion videos	
	IV Biona	notechnology				
	1	Biomachinery- DNA Nanotechnology	3	To understand the human body system and DNA	Lecture with PPT Illustration	Evaluation through short test
	2	Coding- Polymerisation	3	To acquire the Knowledge on Coding and polymerization	Lecture with PPT Illustration	Formative assessment II
	3	DNA computing – Electronic properties	3	TohaveaknowledgeonDNAcomputingandelectronicproperties	Lecture with Discussion	
	4	Biocomputers –DNA sensing- Self-assembly	3	To know the biological devices and self assembly	Lecture with PPT Illustration	
V	Applic	ations of Nanotechnology				
	1	Nanoelectronics-SingleElectronTransistor-Principle-Coulomb	3	To have a knowledge on Solar power using	Lecture with PPT	Short test Formative
		Blockade		nanotechnology		assessment II

2	NEMS- MEMS- Electronics – Batteries	3	To acquire knowledge on nanocomposites and nanotechnology in tartilas	Brain storming session. Lecture	
3	Water Purification- Ceramic membranes	3	in textiles To understand the nanooptics and nanotechnology in communication	Illustration Lecture with PPT Illustration	
4	Nanomedicine- photodynamic therapy – Tissue welding	3	field To acquire knowledge on MEMS, Photonic	Lecture Discussion	Open Book Test
			crystals and thin film optics	videos	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

Semester - VI

Major Core IX

Name of the Course : Digital Systems and Applications

Subject code : PC1762

No. of Hours per week	No of Credits	Total no of Hours	Marks
6	5	90	100

Objectives: 1. To understand the different concepts in digital electronics, digital devices and applications.

2. To prepare students to perform the analysis and design of various digital electronic circuits.

СО	Upon completion of this course, students will be	PSO	CI
CO	able to:	addressed	CL
CO - 1	understand the fundamental concepts and techniques used in Digital Electronics.	PSO - 4	U
CO - 2	perform conversions among different number systems and apply in digital designing.	PSO - 2	Ap
CO - 3	infer the basic logic gates, understand Boolean algebra and simplify simple Boolean functions by using basic Boolean properties.	PSO - 1	U
CO - 4	understand, analyse and design various combinational and sequential circuits. (Flip flop, Counters, MUX, DEMUX, Encoder, Decoder etc.)	PSO - 5	Ap
CO - 5	understand the architecture and operations of microprocessor 8085.	PSO - 7	U
CO - 6	develop the basic idea about the instruction set and data transfer schemes.	PSO - 6	Ар

Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Description	Lecture hours	Learning outcome	Pagagogy	Assessme nt/Evalua tion
Ι	Logic ga	tes and Boolean Algebra				
	1	Universal logic gates – NOR, NAND	3	To be able to build basic logic gates OR, AND, NOT and Ex-OR using NOR	Lecture	Quiz, Assignme nt, Formative assessment (I)

				1		
				and NAND		
		De Mensenie discusse D 't'	1	only To simulify	Lastern	
	2.	De Morgan's theorems – Positive and	4	To simplify Boolean	Lecture	
		negative logic – Boolean laws and theorems		expressions		
	3.	Sum of products method – truth table to	4	To	Lecture	
	5.	Karnaugh map (Three variable and Four	4	interpret	Lecture	
		variable maps) – Karnaugh simplifications		the result		
		– Don't care conditions		of sum of		
				product		
				method		
				using		
				Karnaugh		
				map		
	4.	Product of sums method - Product of	4	То	PPT,	
		sums simplification.		interpret	Lecture,	
				the result	Group	
				product of	discussion	
				sums		
				method		
				using		
				Karnaugh		
TT	Number	Sustan		map		
II	Number		3	То	PPT,	Quiz,
	1	Binary number system – Binary to decimal conversion	5	understand	rr 1,	Assignme
				the concept		nt,
				of binary		Formative
				number		assessment
				system		(I)
	2.	Decimal to binary – Octal numbers –	4	To be able	Lecture,	
		Hexadecimal numbers		to convert	Problem	
				decimal	solving	
				number		
				into its		
				equivalent		
				binary,		
				hexadecim		
				al and octal		
	2	Dinema addition Dinema	Λ	numbers	T a atur	
	3.	Binary addition – Binary subtraction – 1^{s}	4	To be able to add and		
1	1	and 2s complement method			Group discussion	
				cuntract		
				subtract		
				two binary	, Problem	

		– Serial in - Parallel Out		various types of shift registers	Lecture,	Formative assessment (II),
• •	1	Types of registers – Serial in - Serial Out	2	To analyze		Quiz,
IV	Register	s and Counters		working principle of D flip flop		
	4.	D flip flop	2	To understand the	PPT, Lecture,	
	3.	J-K flip flop – R-S master slave flip flop – J-K master – Slave flip flop	5	To understand the working principle of master slave flip flops	PPT, Lecture, Group discussion	
	2	Frequency divider – Logic gate flip flop – R-S flip flop – Clocked R-S flip flop	4	To distinguish between R-S flip flop and Clocked R- S flip flop	PPT, Lecture,	
<u>III</u>	1	er and flipflops 555 timer – Monostable multivibrator Astable multivibrator	4	To know the working principle of 555 timer	Lecture, Group discussion	Quiz, Assignme nt, Formative assessment (I & II),
	4.	Arithmetic building blocks – Half adder and full adder (truth table and Karnaugh map).	4	To know the basic Arithmetic building blocks	PPT, Lecture, Group discussion	
				and 2s complemen t method		

	2	Parallel in - Serial Out – Parallel in – Parallel Out	4	To distinguish between Parallel in Serial Out – Parallel in Parallel Out shift	PPT, Lecture,	
	3	Ring counter – Decade counter: A MOD - 5 counter	4	registers To know the principle of ring counter and decade counter	PPT, Lecture,	
	4	Shift counter – Shift counter Modulus.	3	To distinguish between various counters	PPT, Lecture,	
V	A-D and	D-A converters				
	1	Variable Resistor Network – Binary Ladders	2	To understand the concept of binary ladders	Lecture, PPT	Group discussion, Formative assessment (II),
	2	D-A converter – A-D converter – Simultaneous conversion	3	To be able to convert D-A and A-D	Lecture.	
	3	Multiplexer – De multiplexer	4	To understand the concept of multiplexer and de multiplexer	Lecture, PPT	
	4	Encoder: Decimal to BCD encoder - Decoders : BCD to decimal decoder - Seven segment decoder	6	To be able to understand the operation of encoder and decoder	Lecture	

Semester

: VI

Major Core - VIII

Name of the Course : Mathematical Methods of Physics

Subject code

: PC1761

No of hours per week	No of credits	Total no of hours	Marks
6	6	90	100

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	Illustrate linear dependence and combination of vectors as quantities in Physics.	PSO - 4	U
CO - 2	Evaluate problems in matrices.	PSO - 4	E
CO - 3	Solve ordinary and partial differential equations related to Physical Science.	PSO - 2	С
CO - 4	Adapt Fourier transform technique to obtain the Fourier series of periodic functions of Physics.	PSO - 5	С
CO - 5	Understand and manipulate random variables using the theory of probability including tools of probability transformation and characteristic functions.	PSO - 6	U

Modules

Credit:6

Total Hours:90 (Incl. Seminar & Test)

Unit	Sectio n	Topics	Lecture hours	Learning outcome	Pedagogy	Assesment/E valuation
Ι	Vector A	Analysis				
	1	Point function - Scalar field – Vector field - Gradient of a Scalar field - Physical interpretation	4	To understand basic concepts of scalar field and vector field	Illustration and theoretical derivation	Evaluation through: quiz,
	2	Lamellar Vector field - line, surface and volume integrals -	3	To be able to evaluate line, surface and volume integrals	Illustration, Theoretical formulation Problem Solving	Problem solving

						Theoretical
	3	Divergence of a vector function – Expression for divergence in Cartesian coordinates	2	To derive expression for divergence of a vector function	Analysis Theoretical formulation and Problem solving	derivation Formative
	4	Curl of vector function – Expression for curl in Cartesian coordinates – Physical significance of curl	4	To understand the physical significance of curl operator and solve physical problems	Theoretical formulation and Problem solving	assessment
	5	Gauss divergence theorem – Green's theorem.	2	To derive Gauss divergence theorem and Green's theorem	Illustration and theoretical derivation	
II	Matrices	5		-		
	1	Eigen values - Eigen vectors	2	To understand the basic concepts of eigen values and eigen vectors	Theoretical formulation and Problem solving	Evaluation through: quiz,
	2	Characteristic equation of a matrix – Cayley – Hamilton theorem - – Theorems on eigen values and eigen vectors	5	To derive theorems on eigen values and eigen vectors	Illustration and theoretical derivation	Problem solving Theoretical
	3	Diagonalization of matrices – Special type of matrices – Inverse of a matrix	5	To diagonalize and also find inverse of the given matrix	Theoretical formulation and Problem solving	derivation
	4	Non-homogenous linear equations – Cramer's rule for solving non-homogenous linear equations	3	To solve non- homogenous linear equations using Cramer's rule	Illustration, Theoretical formulation and Problem solving	Formative assessment
III	Differen	tial Equations				

V		n Variables and Probability		physical problems	formulation	
	4	Applications of Fourier series: Sawtooth wave - Half wave rectifier – Full wave rectifier	2	expansion To use Fourier series to evaluate	Descriptive lecture and Theoretical	Formative assessment
	3	Symmetry – Complex form of Fourier series – Change in interval of expansion	4	To apply Fourier theorem for change in interval of	Descriptive lecture and Theoretical formulation	Theoretical derivation
	2	Fourier series –Dirichlet's theorem – Fourier coefficients – Fourier cosine and sine series	5	To evaluate Fourier series	Illustration, Theoretical formulation and Problem solving	Problem solving
IV	Fourier 1	• Analysis Harmonic oscillations – Harmonic synthesis and analysis – Fourier contribution	4	To understand the basic concepts of harmonic synthesis	Illustration, Theoretical formulation	Evaluation through: quiz,
	4	Physical examples: Radioactive decay process.	3	To apply solving techniques of differential equation to solve physical problems	Illustration, Theoretical formulation and Problem solving	
	3	Linear differential equations – Equations of first order and higher degrees	4	homogenous equations To understand the solving of first order and higher order differential equations	and Problem solving Illustration, Theoretical formulation and Problem solving	Theoretical derivation Formative assessment
	2	Homogenous equations – Non – homogenous equations reducible to homogenous ones –	4	 method to solve first order differential equations To reduce non homogenous equations to 	formulation and Problem solving Illustration, Theoretical formulation	quiz, Problem solving
	1	First order equations – Variables separable method	4	To use variable separable	Illustration, Theoretical	Evaluation through:

1	Random Variables – Simple random sample – Mean – Median – Mode – Dispersion	5	To understand basic concepts of random	Illustration, Theoretical formulation	Evaluation through: quiz,
	L		variables		1
2	Elementary properties of probability – Conditional probability – Addition rule of probability – Multiplication law of probability	6	To verify addition rule of probability and multiplication law of probability	and Problem solving	Problem solving Theoretical derivation
3	Probability distribution – Mean, variance and standard deviation of Poisson distribution.	4	To analyze probability distribution and solve physical problems	Illustration, Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

Semester VI

Major core X: Nuclear Physics

Subject Code: PC1763

No of hours per week	No of credits	Total no of hours	Marks	
5	5	75	100	

Objective: 1. To enable the students to understand the properties, models and radioactive

reaction of the nucleus.

2.To create awareness on nuclear reactions such as fission, fusion, radiation detectors and elementary particles so that students can shine.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Define the fundamentals of nuclear matter (properties of nuclei and Nuclear forces)	PSO-2	R
CO- 2	Apply the principles of physics in the measurements of Nuclear size, Nuclear spin, Nuclear energy levels and Nuclear magnetic moment	PSO-1	Ар
CO- 3	Assess radioactivity and various nuclear reactions (nuclear fission and fusion)	PSO-3	E
CO -4	Explain the decay modes, Radiation Detectors and Particle Accelerators (Ionisation chamber,Proportional counter,Geiger Muller counter,Linear accelerator, Cyclotron, Synchro cyclotron, Betatron)	PSO-5	U
CO- 5	Discuss the classification of elementary particles and Quark model	PSO-5	E
CO -6	Analyse the characteristics and behavier of elementary particles and their fundamental interactions	PSO-7	An
CO -7	Develop a deeper understanding of some important applications of nuclear physics in Nuclear Reactor and Source of stellar energy.	PSO-6	С

Modules

T T •4	G		Lecture	Learning	Pedagogy	Assessment/Evaluation
Unit	Section	Topics	Hours	outcomes		
Ι	Proper	ties of Nuclei				
	1	Constituents of nuclei - Isotopes, Isobars, Isotones and mirror nuclei - Nuclear mass and binding energy - Unit of atomic mass - Binding	3	Define the basis of nuclei and stability of nucleus	Lecture discussion	Evaluation Class test, oral question Assignment I
		energy and stability of nucleus				
	2	Mass defect and packing fraction - Binding fraction Vs mass number curve - Nuclear size - Nuclear spin - Nuclear energy levels	3	Apply various Binding energy relations	Derivation and group discussion	
	3	Nuclear magnetic moment - Parity of nuclei - Nuclear quadrupole moment - Statistics of nuclei	3	solution of Nuclear magnetic moment	Derivation, problem solving and group discussion	
	4	Nuclear forces - Liquid drop model - Semi- empherical mass formula - Shell model	3	Apply Nuclear forces in different models	Derivation and group discussion	

Total contact hours: 75 (Including lectures, assignment and tests)

II				Radioactivity		
	1	Radioactivity -	3	Solve	Derivation	
		Radioactive		Radioactive	discussion	Evaluation
		reactions -		reactions		Class test, oral
		Radioactive				question
		decay law -				Assignment
		Statistical nature				
		of radioactivity				I/II
	2	Activity or	3	Define and	Derivation	
		strength of a		derive	and group	
		radio-sample -		Radioactive	discussion	
		Radioactive		decay	problem	
		decay :			solving	
		Conservation				
		laws				
	3	Radioactive	3	Statement	Derivation	
		series:		and proof	and group	
		Displacement		of	discussion	
		law - Successive		displaceme	problem	
		transformation -		nt law	solving	
		Radioactive				
		equilibrium				
	4	Radioact	3	Radioactive	Derivation	
		ive dating: Age		dating and	and group	
		of minerals,		its	discussion	
		rocks - Alpha		applications	problem	
		decay - Beta			solving	
		decay - Gamma				
		decay.				
III			Nu	clear Reaction	S	
-	1	Nuclear	3	Analyse	Derivation	Evaluation
		Reactions:		Conservation		Class test, oral
		Basics -		laws in		question
		Conservation		nuclear		Assignment
		laws in nuclear		Reactions		C
		Reactions -				II
		Energetics of				
		nuclear				
		Reactions				
	2	Cross section of	2	Define and	Derivation	
	-	nuclear	-	derive nuclear		
		Reactions -		Reactions,	discussion	
		Reaction		Reaction		
		mechanisms -		mechanisms		

			1		[1
		Nuclear fission -		&Nuclear		
		Energy released		fission		
		in fission of U-				
		235				
	3	Liquid drop	4	Define and	Derivation	
		theory of fission		Derive	and group	
		- Nuclear chain		Nuclear chain	discussion,	
		reaction -		reaction,	PPT	
		Nuclear Reactor		Types of		
		- Types of		reactor,		
		reactor - Breeder		Breeder		
		reactor - Fission		reactor &		
		bomb		Fission bomb		
	4	Fusion: Thermo	3	Define, derive	Derivation	
	-	nuclear reaction	J.	and apply	and group	
		- Source of		Uncontrolled	discussion	
		stellar energy:			uiscussion	
		Natural fusion -		fusion:		
		Uncontrolled		Hydrogen		
				bomb		
		fusion:				
TX 7		Hydrogen bomb.				
IV	-			ctors and Partic		
	1	Introduction -	3	Discuss	Derivation	Evaluation
		Ionisation		different types	discussion	Class test, oral
		chamber -		of Radiation		question
		Proportional		Detectors		Assignment
		counter - Geiger				II/III
		Muller counter -				
		Neutron				
		detection				
	2	Cloud chamber -	3	Define and	Derivation	
		Scintillation		derive Cloud	and group	
		counter -		chamber &	discussion,	
		Photographic		Scintillation	PPT	
		detection - Solid		counter		
		state track				
		detector				
	3	Semiconductor	3	Define and	Derivation	
		detector -		Derive	and group	
		Particle		different types	discussion	
		accelerators -		of Particle		
		Linear		accelerators		
		accelerator				
	4	Cyclotron -	3	Define,	Derivation	
	-	Synchro	-	derive and	and group	
1					8r	

		Betatron		Cyclotron , Synchro cyclotron and Betatron		
V				ementary Partic		
	1	Introduction - Fundamental Interactions - Pions and Muons - K mesons – Hyperons, Antiparticles	3	Analyse Fundamental Interactions	Discussion PPT	Evaluation Class test, oral question Assignment III
	2	Classification of elementary particles - Conservation laws - CPT theorem	3	Analyse classification of elementary particles	Derivation and group discussion, PPT	
	3	Resonance particles - Symmetry classification of elementary particles	3	Explain symmetry classification of elementary particles	Derivation and group discussion	
	4	Quark model Unification of interactions - The standard model.	3	Define , derive and apply Quark model	Derivation and group discussion, PPT	

Books:

1. Gupta, A.B. (2015). *Modern Physics*. (2nd ed.). New Delhi: Books and Allied (P) Ltd.

Unit I: Chapter 18 : 18.1-18.3, 18.5-18.16, 18.17, 18.18, 18.18.1, 18.19, 18.19.1 -

18.19.4

Unit II: Chapter 19 : 19.1 - 19.9, 19.11

Unit III: Chapter 20: 20.1-20.16

Unit IV: Chapter 21: 21.1-21.5, 21.7, 21.7.1, 21.7.2, 21.9, 21.11-21.16, 21.17.2, 21.18

Unit V: Chapter 22: 22.1-22.9, 22.10, 22.11-22.14

2. Arthur Beiser. (2006). *Concepts of Modern Physics*. (6th ed.).New Delhi: Tata McGraw - Hill Edition,

Unit II: Chapter 12: 12.4-12.6, Appendix (theory of alpha decay)

Reference Books:

1. Tayal D.C. (2002). *Nuclear Physics*. (1st ed.). New Delhi: Himalaya Publishing House.

2. Roy R.R. and Nigam B.P. (1983). *Nuclear Physics*, (2nd ed.). Bangalore: New age International Ltd.

3. SatyaPrakash, (2004). *Nuclear Physics and Particle Physics*. (1st ed.). New Delhi: S. Sultan Chand & Sons Publications.