B.Sc Physics
 Semester VI
 Elective - IV (a): Nanomaterials and its Applications
 Subject Code: PC1764

No of hours per week	No of credits	Total no of hours	Marks
5	4	75	100

Objectives: 1. To gain knowledge on synthesis and characterization of nanomaterials.
2. To understand the advancements and applications of nanostructures.

CO No	Course outcomes Upon completion of this course, students will be able to	PSOs addressed	CL
CO-1	Infer the history of nanotechnology and explain the various dimensions of nanostructures	PSO-1	U
CO-2	Apply the characterization techniques of nanomaterials (XRD,SEM,TEM and Analytical Electron Microscope)	PSO-3	Ap
CO-3	Explain the synthesis of nanomaterials and categorize their properties	PSO-2	An
CO-4	Interpret quantum well, quantum wires and quantum dots	PSO-5	E
CO-5	Explain the carbon nanotubes and its applications.	PSO-6	E
CO-6	Discuss the applications of nanotechnology in various fields	PSO-4	C

Modules

Credits: 4 Total contact hours: 75 (Including assignments and tests)

Unit	Section	Topics	Lect ure hour s	Learning outcome	Pedagogy	Assessment/ Evaluation
I	Introduction to nanotechnology					
	1	History of nanotechnology - Inorganic nanomaterials - Organic nanomaterials - Techniques in nanotechnology	3	To understand the history of nanotechnology and its techniques	Lecture Discussio n with PPT illustration	Evaluation through short test Multiple choice

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \begin{tabular}{|c}
2 \\
\\
\\
\hline 3 \\
\\
4
\end{tabular} \& \begin{tabular}{|lrr}
Dimensions \& of \\
nanostructures \& - \& One \\
dimensional \& nanoscale \& - \\
Two \& dimensional \\
nanoscale- \& \begin{tabular}{c}
Three
\end{tabular} \\
dimensional \& nanoscale
\end{tabular} \& 3

3

3 \& \begin{tabular}{l}
To be able to

distinguish the

dimensions of

nanoscale

To know the

principles of

nanomaterials

and their

synrhesis.

To distinguish
between
nanorings,
nanorods,
nanoshells and to
acquire
knowledge on
the properties of
nanoparticles

\hline

 \&

Lecture discussion with illustration

Lecture discussion

Lecture discussion

 \&

questions

Formative assessment I
\end{tabular}

\hline II \& \multicolumn{6}{|l|}{Quantum wells, Quantum wires and Quantum Dots}

\hline \multirow[t]{3}{*}{} \& 1 \& Introduction - Potential
well - Quantum well -
Particle in a box - One-
dimensional box - Two-
dimensional box - Three-

dimensional box \& 5 \& To acquire knowledge on Potential ,Quantum well and Particle in a box \& | Lecture with PPT |
| :--- |
| Illustration | \& Formative assessment I

\hline \& 2 \& Superlattices- Types of Superlattices \& 3 \& To understand the concept of Superlattices and its types \& | Questionanswer session |
| :--- |
| Lecture | \&

\hline \& 3 \& Applications of quantum wells -Quantum wire Density of States (3D, 2D, 1D, 0D) -Quantum dots Electrons in mesoscopic structures. \& 4 \& To know the density of States, Quantum dots and electron in mesoscopic structure \& | Lecture with PPT |
| :--- |
| Illustration | \&

\hline III \& \multicolumn{6}{|l|}{Carbon Nanotubes}

\hline \& 1 \& Discovery of nanotubes - \& 3 \& To acquire \& Lecture \&

\hline
\end{tabular}

		Allotropes of carbon - Structure of carbon nanotubes		knowledge on discovery, Allotropes of carbon and structure of carbon nanotubes	Discussion videos ppt	Formative assessment II
	2	Categories of carbon nanotubes : Tours - Buckminster fullerene - Carbon nanohorns - Fullerite - Nanobud	3	To categorize carbon nanotubes	Lecture Discussion videos	
	3	Synthesis of carbon nanotubes: Laser method - Electrolysis - Chemical Vapour Deposition (CVD)	3	To haver a knowledge on synthesis of carbon nanotubes	Lecture with PPT Illustration	
	4	Purification of carbon nanotubes and fullerene Applications of carbon nanotubes.	3	To acquire knowledge on purification and applications of carbon nanotubes	Lecture Discussion videos	
IV Bionanotechnology						
	,	Biomachinery- DNA Nanotechnology	3	To understand the human body system and DNA	Lecture with PPT Illustration	Evaluation through short test
	2	Coding- Polymerisation	3	To acquire the Knowledge on Coding and polymerization	Lecture with PPT Illustration	Formative assessment II
	3	DNA computing Electronic properties	3	To \quad have a knowledge on DNA computing and electronic properties	Lecture with Discussion	
	4	Biocomputers -DNA sensing- Self-assembly	3	To know the biological devices and self assembly	Lecture with PPT Illustration	
V		tions of Nanotechnology				
	1	Nanoelectronics- Single Electron Transistor- Principle- Coulomb Blockade	3	To have a knowledge on Solar power using nanotechnology	Lecture with PPT	Short test Formative assessment II

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 2 & \begin{array}{l}\text { NEMS- MEMS- } \\ \text { Electronics - Batteries }\end{array} & 3 & \begin{array}{l}\text { To acquire } \\ \text { knowledge on on } \\ \text { nanocomposites } \\ \text { and } \\ \text { nanotechnology } \\ \text { in textiles }\end{array} & \begin{array}{l}\text { Brain } \\ \text { storming } \\ \text { session. }\end{array} & \text { Lecture } \\ \text { Illustration }\end{array}\right]$.

PO- Program outcome; LO - Learning outcome; Cognitive Level R - Remember; U - Understand; ApApply, An- Analyze; E-Evaluate; C- Create

Name of the Course : Digital Systems and Applications
Subject code : PC1762

No. of Hours per week	No of Credits	Total no of Hours	Marks
6	5	90	100

Objectives: 1. To understand the different concepts in digital electronics, digital devices and applications.
2. To prepare students to perform the analysis and design of various digital electronic circuits.

CO	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand the fundamental concepts and techniques used in Digital Electronics.	PSO-4	U
CO-2	perform conversions among different number systems and apply in digital designing.	PSO-2	Ap
CO-3	infer the basic logic gates, understand Boolean algebra and simplify simple Boolean functions by using basic Boolean properties.	PSO-1	U
CO-4	understand, analyse and design various combinational and sequential circuits. (Flip flop, Counters, MUX, DEMUX, Encoder, Decoder etc.)	PSO-5	Ap
CO-5	understand the architecture and operations of microprocessor 8085.	PSO-7	U
CO-6	develop the basic idea about the instruction set and data transfer schemes.	PSO-6	Ap

Total Hours: 90 (Incl. Seminar \& Test)

| Unit | Section | Description | Lecture
 hours | Learning
 outcome | Pagagogy | Assessme
 nt/Evalua
 tion |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| I | Logic gates and Boolean Algebra | 3 | To be able
 to build
 basic logic | PPT,
 Lecture
 gates OR, | Quiz,
 Assignme
 nt, | |
| | 1 | Universal logic gates - NOR, NAND | | AND, NOT
 and Ex-OR
 andive
 asing NOR | | assessment
 (I) |

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& 2.
3.

4. \& | De Morgan's theorems - Positive and negative logic - Boolean laws and theorems |
| :--- |
| Sum of products method - truth table to Karnaugh map (Three variable and Four variable maps) - Karnaugh simplifications - Don't care conditions |
| Product of sums method - Product of sums simplification. | \& 4

4
4

4 \& \begin{tabular}{l}
and NAND

only

To simplify

Boolean

expressions

To

interpret

the result

of sum of

product

method

using

Karnaugh

map

To

interpret

the result

product of

sums

method

using

Karnaugh map

 \&

Lecture

Lecture

PPT,

Lecture,

Group

discussion
\end{tabular} \&

\hline II \& Num \& System \& \& \& \&

\hline \& 1 \& Binary number system - Binary to decimal conversion \& 3 \& To understand the concept of binary number system \& PPT, \& Quiz, Assignme nt, Formative assessment (I)

\hline \& 2. \& Decimal to binary - Octal numbers Hexadecimal numbers \& 4 \& To be able to convert decimal number into its equivalent binary, hexadecim al and octal numbers \& Lecture, Problem solving \&

\hline \& 3. \& Binary addition - Binary subtraction - 1^{s} and 2 s complement method \& 4 \& To be able to add and subtract two binary numbers using 1s \& Lecture, Group discussion , Problem solving \&

\hline
\end{tabular}

	4.	Arithmetic building blocks - Half adder and full adder (truth table and Karnaugh map).	4	lad 2s and complemen t method To know the basic Arithmetic building blocks	PPT, Lecture, Group discussion	
III	555 timer and flipflops					
	1	555 timer - Monostable multivibrator Astable multivibrator	4	To know the working principle of 555 timer	Lecture, Group discussion	Quiz, Assignme nt, Formative assessment (I \& II),
	2	Frequency divider - Logic gate flip flop -R-S flip flop - Clocked R-S flip flop	4	To distinguish between R-S flip flop and Clocked RS flip flop	PPT, Lecture,	
	3.	J-K flip flop - R-S master slave flip flop -J-K master - Slave flip flop	5	To understand the working principle of master slave flip flops	PPT, Lecture, Group discussion	
	4.	D flip flop	2	To understand the working principle of D flip flop	PPT, Lecture,	
IV	Registers and Counters					
	1	Types of registers - Serial in - Serial Out - Serial in - Parallel Out	2	To analyze various types of shift registers	PPT, Lecture,	Quiz, Formative assessment (II),

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& 2

3

4 \& | Parallel in - Serial Out - Parallel in Parallel Out |
| :--- |
| Ring counter - Decade counter: A MOD 5 counter | \& 4

4
4

3 \& \begin{tabular}{l}
To distinguish between Parallel in Serial Out - Parallel in Parallel Out shift registers the principle of ring counter and decade counter

To distinguish between various counters

 \&

PPT,

Lecture,

\hline | PPT, |
| :--- |
| Lecture, |

\hline | PPT, |
| :--- |
| Lecture, |

\end{tabular} \&

\hline V \& A-D \& D-A converters \& \& \& \&

\hline \& 1 \& Variable Resistor Network - Binary Ladders \& 2 \& To understand the concept of binary ladders \& Lecture, PPT \& Group discussion, Formative assessment (II),

\hline \& 2 \& D-A converter - A-D converter Simultaneous conversion \& 3 \& To be able to convert D-A and A-D \& Lecture. \&

\hline \& 3 \& Multiplexer - De multiplexer \& 4 \& To understand the concept of multiplexer and de multiplexer \& Lecture, PPT \&

\hline \& 4 \& Encoder: Decimal to BCD encoder Decoders : BCD to decimal decoder Seven segment decoder \& 6 \& To be able to understand the operation of encoder and decoder \& Lecture \&

\hline
\end{tabular}

Name of the Course
Subject code
: Mathematical Methods of Physics
: PC1761

No of hours per week	No of credits	Total no of hours	Marks
6	6	90	100

CO	Upon completion of this course, students will be able to:	$\begin{gathered} \text { PSO } \\ \text { addressed } \end{gathered}$	CL
CO-1	Illustrate linear dependence and combination of vectors as quantities in Physics.	PSO-4	U
CO-2	Evaluate problems in matrices.	PSO-4	E
CO-3	Solve ordinary and partial differential equations related to Physical Science.	PSO-2	C
CO-4	Adapt Fourier transform technique to obtain the Fourier series of periodic functions of Physics.	PSO-5	C
CO-5	Understand and manipulate random variables using the theory of probability including tools of probability transformation and characteristic functions.	PSO-6	U

Modules

Credit: 6
Total Hours:90 (Incl. Seminar \& Test)

Unit	Sectio \mathbf{n}	Topics	Lecture hours	Learning outcome	Pedagogy	Assesment/E valuation
I	Vector Analysis		而			
	1	Point function - Scalar field - Vector field - Gradient of a Scalar field - Physical interpretation	4	To understand basic concepts of scalar field and vector field	Illustration and theoretical derivation	Evaluation through: quiz,
	2	Lamellar Vector field - line, surface and volume integrals -	3	To be able to evaluate line, surface and volume integrals	Illustration, Theoretical formulation Problem Solving	Problem solving

						Theoretical derivation
	3	Divergence of a vector function - Expression for divergence in Cartesian coordinates	2	To derive expression for divergence of a vector function	Analysis Theoretical formulation and Problem solving	
	4	Curl of vector function Expression for curl in Cartesian coordinates - Physical significance of curl	4	To understand the physical significance of curl operator and solve physical problems	Theoretical formulation and Problem solving	Formative assessment
	5	Gauss divergence theorem Green's theorem.	2	To derive Gauss divergence theorem and Green's theorem	Illustration and theoretical derivation	
II	Matrices					
	1	Eigen values - Eigen vectors	2	To understand the basic concepts of eigen values and eigen vectors	Theoretical formulation and Problem solving	Evaluation through: quiz,
	2	Characteristic equation of a matrix - Cayley - Hamilton theorem - - Theorems on eigen values and eigen vectors	5	To derive theorems on eigen values and eigen vectors	Illustration and theoretical derivation	Problem solving Theoretical
	3	Diagonalization of matrices Special type of matrices Inverse of a matrix	5	To diagonalize and also find inverse of the given matrix	Theoretical formulation and Problem solving	derivation
	4	Non-homogenous linear equations - Cramer's rule for solving non-homogenous linear equations	3	To solve nonhomogenous linear equations using Cramer's rule	Illustration, Theoretical formulation and Problem solving	Formative assessment
III	Differential Equations					

	1	First order equations - Variables separable method	4	$\begin{aligned} & \text { To use variable } \\ & \text { separable } \\ & \text { method to solve } \\ & \text { first order } \\ & \text { differential } \\ & \text { equations } \\ & \hline \end{aligned}$	Illustration, Theoretical formulation and Problem solving	Evaluation through: quiz,
	2	Homogenous equations - Non homogenous equations reducible to homogenous ones -	4	To reduce non homogenous equations to homogenous equations	Illustration, Theoretical formulation and Problem solving	Problem solving
	3	Linear differential equations Equations of first order and higher degrees	4	To understand the solving of first order and higher order differential equations	Illustration, Theoretical formulation and Problem solving	Theoretical derivation
	4	Physical examples: Radioactive decay process.	3	To apply solving techniques of differential equation to solve physical problems	Illustration, Theoretical formulation and Problem solving	
IV	Fourier Analysis					
	1	Harmonic oscillations Harmonic synthesis and analysis - Fourier contribution	4	To understand the basic concepts of harmonic synthesis	Illustration, Theoretical formulation	Evaluation through: quiz,
	2	Fourier series -Dirichlet's theorem - Fourier coefficients Fourier cosine and sine series	5	To evaluate Fourier series	Illustration, Theoretical formulation and Problem solving	Problem solving
	3	Symmetry - Complex form of Fourier series - Change in interval of expansion	4	To apply Fourier theorem for change in interval of expansion	Descriptive lecture and Theoretical formulation	Theoretical derivation
	4	Applications of Fourier series: Sawtooth wave - Half wave rectifier - Full wave rectifier	2	To use Fourier series to evaluate physical problems	Descriptive lecture and Theoretical formulation	Formative assessment
V	Random Variables and Probability					

	1	Random Variables - Simple random sample - Mean - Median - Mode - Dispersion	5	To understand basic concepts of random variables	Illustration, Theoretical formulation	Evaluation through: quiz,
	2	Elementary properties of probability - Conditional probability - Addition rule of probability - Multiplication law of probability	6	To verify addition rule of probability and multiplication law of probability	and Problem solving	Problem solving
	3	Probability distribution - Mean, variance and standard deviation of Poisson distribution.	4	To analyze probability distribution and solve physical problems	Illustration, Theoretical formulation	Theoretical derivation assessment

PO- Program outcome; LO - Learning outcome; Cognitive Level R - Remember; U - Understand; ApApply, An- Analyze; E-Evaluate; C- Create

Semester VI

Major core X: Nuclear Physics

Subject Code: PC1763

No of hours per week	No of credits	Total no of hours	Marks
5	5	75	100

Objective: 1. To enable the students to understand the properties, models and radioactive reaction of the nucleus.
2.To create awareness on nuclear reactions such as fission, fusion, radiation detectors and elementary particles so that students can shine.

CO	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Define the fundamentals of nuclear matter (properties of nuclei and Nuclear forces)	PSO-2	R
CO-2	Apply the principles of physics in the measurements of Nuclear size, Nuclear spin, Nuclear energy levels and Nuclear magnetic moment	PSO-1	Ap
CO- 3	Assess radioactivity and various nuclear reactions (nuclear fission and fusion)	PSO-3	E
CO-4	Explain the decay modes, Radiation Detectors and Particle Accelerators (Ionisation chamber,Proportional counter,Geiger Muller counter,Linear accelerator, Cyclotron, Synchro cyclotron, Betatron)	PSO-5	U
CO- 5	Discuss the classification of elementary particles and Quark model	PSO-5	E
CO -6	Analyse the characteristics and behavier of elementary particles and their fundamental interactions	PSO-7	An
CO-7	Develop a deeper understanding of some important applications of nuclear physics in Nuclear Reactor and Source of stellar energy.	PSO-6	C

Modules

Total contact hours: 75 (Including lectures, assignment and tests)

Unit	Section	Topics	Lecture Hours	Learning outcomes	Pedagogy	Assessment/Evaluation
I	Properties of Nuclei					
	1	Constituents of nuclei Isotopes, Isobars, Isotones and mirror nuclei Nuclear mass and binding energy - Unit of atomic mass - Binding energy and stability of nucleus	3	Define the basis of nuclei and stability of nucleus	Lecture discussion	Evaluation Class test, oral question Assignment I
	2	Mass defect and packing fraction Binding fraction Vs mass number curve - Nuclear size - Nuclear spin - Nuclear energy levels	3	Apply various Binding energy relations	Derivation and group discussion	
	3	Nuclear magnetic moment Parity of nuclei - Nuclear quadrupole moment Statistics of nuclei	3	solution of Nuclear magnetic moment	Derivation, problem solving and group discussion	
	4	Nuclear forces - Liquid drop model - Semiempherical mass formula Shell model	3	Apply Nuclear forces in different models	Derivation and group discussion	

II	Radioactivity					
	1	Radioactivity Radioactive reactions Radioactive decay law Statistical nature of radioactivity	3	Solve Radioactive reactions	Derivation discussion	Evaluation Class test, oral question Assignment
	2	Activity or strength of a radio-sample Radioactive decay : Conservation laws	3	Define and derive Radioactive decay	Derivation and group discussion problem solving	
	3	Radioactive series: Displacement law - Successive transformation Radioactive equilibrium	3	Statement and proof of displaceme nt law	Derivation and group discussion problem solving	
	4	Radioact ive dating: Age of minerals, rocks - decay Alpha decay - Gamma decay.	3	Radioactive dating and its applications	Derivation and group discussion problem solving	
III	Nuclear Reactions					
	1	Nuclear Reactions: Basics Conservation laws in nuclear Reactions Energetics of nuclear Reactions	3	Analyse Conservation laws in nuclear Reactions	Derivation discussion	Evaluation Class test, oral question Assignment
	2	Cross section of nuclear Reactions Reaction mechanisms -	2	Define and derive nuclear Reactions , Reaction mechanisms	Derivation and group discussion	

		Nuclear fission Energy released in fission of U 235		\&Nuclear fission		
	3	Liquid drop theory of fission - Nuclear chain reaction - Nuclear Reactor - Types of reactor - Breeder reactor - Fission bomb	4	Define and Derive Nuclear chain reaction, Types of reactor, Breeder reactor \& Fission bomb	Derivation and group discussion, PPT	
	4	Fusion: Thermo nuclear reaction - Source of stellar energy: Natural fusion Uncontrolled fusion: Hydrogen bomb.	3	Define, derive and apply Uncontrolled fusion: Hydrogen bomb	Derivation and group discussion	
IV	Radiation Detectors and Particle Accelerators					
	1	Introduction Ionisation chamber Proportional counter - Geiger Muller counter Neutron detection	3	Discuss different types of Radiation Detectors	Derivation discussion	Evaluation Class test, oral question Assignment II/III
	2	Cloud chamber - Scintillation counter - Photographic detection - Solid state track detector	3	Define and derive Cloud chamber \& Scintillation counter	Derivation and group discussion, PPT	
	3	Semiconductor detector Particle accelerators Linear accelerator	3	Define and Derive different types of Particle accelerators	Derivation and group discussion	
	4	Cyclotron Synchro cyclotron -	3	Define, derive and apply	Derivation and group discussion	

		Betatron		Cyclotron , Synchro cyclotron and Betatron		
V	Elementary Particles					
	1	Introduction - Fundamental Interactions - Pions and Muons - K mesons - Hyperons, Antiparticles	3	Analyse Fundamental Interactions	Discussion PPT	Evaluation Class test, oral question Assignment III
	2	Classification of elementary particles Conservation laws - CPT theorem	3	Analyse classification of elementary particles	Derivation and group discussion, PPT	
	3	Resonance particles Symmetry classification of elementary particles	3	Explain symmetry classification of elementary particles	Derivation and group discussion	
	4	Quark model Unification of interactions The standard model.	3	Define, derive and apply Quark model	Derivation and group discussion, PPT	

Books:

1. Gupta, A.B. (2015). Modern Physics. ($2^{\text {nd }}$ ed.). New Delhi: Books and Allied (P) Ltd.

Unit I: Chapter $18: 18.1-18.3,18.5-18.16,18.17,18.18,18.18 .1,18.19,18.19 .1-$
18.19.4

Unit II: Chapter 19: 19.1-19.9, 19.11
Unit III: Chapter 20: 20.1-20.16
Unit IV: Chapter 21: 21.1-21.5, 21.7, 21.7.1, 21.7.2, 21.9, 21.11-21.16, 21.17.2, 21.18
Unit V: Chapter 22: 22.1-22.9, 22.10, 22.11-22.14
2. Arthur Beiser. (2006). Concepts of Modern Physics. ($6^{\text {th }}$ ed.).New Delhi: Tata McGraw - Hill Edition,

Unit II: Chapter 12: 12.4-12.6, Appendix (theory of alpha decay)
Reference Books:

1. Tayal D.C. (2002). Nuclear Physics. ($1^{\text {st }}$ ed.). New Delhi: Himalaya Publishing House.
2. Roy R.R. and Nigam B.P. (1983). .Nuclear Physics, (2 ${ }^{\text {nd }}$ ed.). Bangalore: New age International Ltd.
3. SatyaPrakash, (2004). Nuclear Physics and Particle Physics. (1 ${ }^{\text {st }}$ ed.). New Delhi: S. Sultan Chand \& Sons Publications.
